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Rapid inversion of angular deflection data for :.....J
certain axisymmetric refractive index distributions

R. Rubinstein and P. S. Greenberg

Certain functions useful for representing axisymmetric refractive-index distributions are shown to have

exact solutions for Abel transformation of the resulting angular deflection data.
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The tomographic reconstruction of axisymmetric re-
fractive-index distributions from angular deflection
data (e.g., schlieren, moir6) is a subject of consider-
able interest, particularly in the areas of combustion
science and fluid physics. Although the mathemati-
cal solution to this problem was presented by Abel 1
more than a century ago, the formal solution is
seldom used in practice, primarily because of the
singular behavior of the integrand at r = 0 and the

requirement for spatially differentiated, often noisy,
experimental data. The latter is less of a concern in
the present context, since the resulting angular devia-
tions are physically associated with the spatial gradi-
ents of the field itself; thus one avoids problems
associated with the differentiation of noisy data. A
number of schemes exist for the numerical inversion
of line-of-sight data, and their properties have been
extensively investigated and compared. 2 We show
here that certain classes of function suitable for the

representation ofaxisymmetric refractive-index fields
have exact solutions with respect to the Abel inver-
sion of the resulting angular deflection data. These
solutions include both Gaussian and Hermite polyno-
mials, the latter being of particular value since Her-
mite polynomials form an orthonormal basis for

radial decomposition. The solutions are physically
useful owing to their asymptotic behavior as r --* _.
Since the solutions are in the form of combinations of

known functions and recurrence relations, the inver-
sion reduces to a trivial lookup table operation involv-
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ing precomputed coefficients. This process can be
implemented extremely rapidly, even when high poly-
nomial orders are retained. In addition the process
of basis decomposition with a finite cutoff effectively
smooths the data, which diminishes the effects of
spatial noise.

When a planar refractive-index distribution _ is
axisymmetric, 5 = 5(r), and satisfies the conditions

d_r ds << 1, (la)

5(r) _ 0 for r --* :¢, (lb)

where L denotes any ray path and ds is the correspond-
ing element of arc length, then the optical path length
and the angular deflection along any ray can be
evaluated as if the ray did not depart from its initially
linear trajectory. Here we use the standard conven-
tion 5 = n - 1, where n is the total value of the
refractive index. Condition (lb) means that we de-
note by 5 the departure of the refractive index from
its value in empty space. This approximation leads
to the well-known relationships 3 between angular
deflection (e.g., schlieren) data e(y) and the refractive-
index distribution 5(r):

_ d5 dre(y) = 2y dr (r 2 -y2)1_2 '
(2a)

5(r) = -- e(y) _ r2),. 2 • (2b)_r (y2

Equation (2a) represents the direct problem of evalu-
ating the angular deflection, and Eq. (2b) the inverse
problem. Figure 1 illustrates the coordinate system
of the initial ray trajectories and their resulting
deflections.
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Fig. 1. Geometry of ray deflections in an axisymmetric refractive-

index distribution n(r}: yi, entrance coordinates of the initial rays;

ds, differential length along any given ray; r, radial coordinate of

the refractive-index distribution; e(yx}, exit angle of the ray originat-

ing at the coordinatey, = y_.

A simple pair of functions related by Eqs. (2) is

_ dv 1 (_r)l 2exp(_r2) ' (3)x v exp(-v 2) (u2 _ x2)1,2 - 2

which follows from elementary changes of the vari-
able in the integral for the gamma function. This
equation determines the angular data corresponding
to a Gaussian refractive-index distribution,

B(r) =Aexp(-r2), (4)

or the refractive-index distribution when the angular
data are of the form

e(y) = By exp(-y2). (5)

Substitution of either Eq. (4) or (5) into Eq. (2a) or
(2b), respectively, reduces at once to Eq. (3).

These results can be generalized by

dvv2"+l exp(-v 2) (v2 - x2)1'2

-21(_r)l/2x2"+'exp(-x2)U( l'n+2'x 23) , (6)

where U is a solution of Kummer's equation. 4 We
can evaluate the function U for n, an integer, by

applying the recurrence relations

1 z)tl zt (lcz)+ _c_
+z ,c+ 1, z =0,

)(1)U-_c + I,z = ,c,z - U _,c,z , (7)

and the initial value

, _' z 2 = (_r)l '2 exp(z2)erfc(z). (8)

From Eqs. (6) and (7) follow

U ,_,z =_z -12,

(1 5 ) 1 1, = 4 Z-3' 2"U_ _,z _z-' 2 + {9)

These results generalize the stated results above as
follows: Define a Gaussian polynomial to be the
product of a polynomial and the Gaussian function
exp(-r2). If the refractive-index distribution is an
even Gaussian polynomial,

B(r) = (ao + a2r2 + "" ")exp(-r2), (10)

its derivative is an odd Gaussian polynomial, and the

corresponding angular data are the odd Gaussian
polynomial found by substitution of the results of
Eqs. (6)-(9) into Eq. (2a). Conversely, if the angular
data are a given odd Gaussian polynomial, the corre-
sponding even Gaussian polynomial refractive-index
distribution follows by substitution of the results of
Eqs. (6)-(9) in Eq. (2b).

These exact results imply a simple approximation
scheme when the angular data can be accurately
represented by an odd Gaussian polynomial; because
of the asymptotic return of the refractive index to its
reference value in many combustion science and fluid

physics applications, this approximation is reasonable.
It is necessary first to approximate the angular data
by an odd Gaussian polynomial. The orthogonality
of Hermite polynomials makes this process straight-
forward, namely,

e(y) ~ _ aiHi(y)exp(-y 2) (11)
i odd

with

I _ e(y)gi(y)

Inspection of Eqs. (2) demonstrates that the refractive-
index distribution is given by an even Gaussian

polynomial.
The recurrence relation [Eqs. (7)] can be applied to

expedite the calculation. Since the right-hand side
of Eq. (6) is a Gaussian polynomial, we define

(1x2""U 2' n + _, x 2 = g(n, x_).

Then Eqs. (7) provide the recurrence

V(n,x 2)= x 2 + n-_ V(n- 1, x 2)

-I- X2(1 -- n)V(n - 2, x2). (12)

We define H,,m by

Ha(x) = E Hn,rn xm"
m>O
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Explicitly

Ho,o = 1, Ho,m = 0 for m > 1,

H_,o = 0, Hi,1 = 2, Hl,m = 0 for m > 2,

Hn,o = -2(n - 1)Hn_2,o for n > 2,

Hn,m = -2(n - 1)H,-2,m + 2Hn-l,m-1

forn > 2, m > 1. (13)

Then, writing

e(y) = _ anH,_(y)exp(-Y 2)
n odd

= _ anH.,2p+lY _p+I exp(-y2),
n odd,pa 0

we give the corresponding refractive index as

_1_ I = dy _, a.H.,2p+ly2p+l exp(_y2)
5(r) = _r Jr (y2 _ &).odd.;>_0

1 E 1)2P+ 1

-- -- 2(Tr) 1 n odd, p >- 0

× exp(-v2)U _p + _, v 2 H.,2p+l

= __(,ff)l 2 E anH",2p *I exp(-v2)V(P' v2)'

2 n odd,p>0

which we can rapidly and accurately evaluate to any

order by using Eqs. (12) and (13).
These results are stated here in terms of dimension-

less variables. In inverting experimental data the
variables should be scaled so that the decay of the

Hermite polynomials appropriately matches the de-

cay of the data.
As a representative application we reconstructed

the refractive-index distribution

5(r) = exp[-(r - 1) 2] + exp[-(r + 1)2],

using seven-term Hermite interpolation of correspond-
ing numerically evaluated angular data. The results
in Fig. 2 show that the reconstruction is very accurate.
One can reduce the error in the reconstruction fur-

ther simply by taking higher-order Hermite approxi-
mations of the data. Because the approximation

requires functions that are evaluated by simple recur-
rence relations and coefficients that are evaluated by

simple numerical quadratures, the computer re-
sources required by the inversion are negligible.

An advantage of this procedure over direct numeri-
cal Abel inversion is that least-squares curve fitting is
a smoothing process that reduces the noise sensitivity
of the computation, s To bound the effect of noise on
this inversion, we establish the inequality

[V(n, x2)exp(-x 2) [dx < C v 2_+1 exp(-v2) dv

(14)
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Fig. 2. Error in seven-term reconstruction of a model refractive-

index field.

with C independent of n. Therefore noise in the in-
version is then bounded by noise in the data; specifi-

cally the magnitude of the noise does not grow if the
number of terms used in the inversion is increased.

Note the equality

f0 _ ln!l)2n+l exp(-v2)dv =

and the estimate

°v 2" exp(-u2)dv ~ n!.

Let

V(n, x 2) = ao x2n -I- al x2n-2 -F "'" -l- a2n.

Then the recurrence formula given by Eq. (12) pro-

vides the bound

la.I < 3(2p - 1)!!/2 "+_ ~ 3p! forp > 1,

where as usual (2p - 1)!! = (2p - 1)(2p - 3),..., 1.
Therefore

IV(n, x2)exp(-x2)dx v 2"+1 exp(-v2)dv

--< 6_i/2 -2_I n!22n_2p + 1

~ 6_d/2[p_._lp!(n- p),/n! + 11 •

The inequality

8

_, p!(n - p)!/n! < -_ (15)
O<p<n

then establishes inequality (14). Inequality (15) has
been evaluated numerieally and is shown to peak at
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its maximum value for n = 3 and 4, from which point

it decreases monotonically with increasing n.
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